The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells.

نویسندگان

  • Wanping Xu
  • Xitong Yuan
  • Yun Jin Jung
  • Yongping Yang
  • Andrea Basso
  • Neal Rosen
  • Eun Joo Chung
  • Jane Trepel
  • Len Neckers
چکیده

AKT, a serine/threonine kinase that promotes cell survival, can be activated by overexpression of the receptor tyrosine kinase ErbB2. Conversely, down-regulation of ErbB2 inhibits AKT activation. Here, we identify PP1 as a serine/threonine phosphatase that associates with and dephosphorylates AKT in breast cancer cells, and we show that ErbB2 inhibits PP1-dependent dephosphorylation of AKT. Inhibition of ErbB2 by either the HSP (heat shock protein) 90 inhibitor geldanamycin or the ErbB inhibitor ZD1839 in SKBR3 cells, a human breast cancer cell line overexpressing ErbB2 protein, induces a rapid and dramatic decrease in AKT activity. Decreased AKT activity occurs many hours before the HSP90-dependent decline of AKT protein but is correlated with loss of AKT phosphorylation. Decreased AKT phosphorylation is not due to blockade of AKT activation or to preferential HSP90-mediated degradation of phosphorylated AKT. Instead, it is caused by increased AKT dephosphorylation. Sensitivity to a panel of phosphatase inhibitors suggests involvement of the phosphatase PP1 in this process. In vitro phosphatase assay (using PP1 immunoprecipitated from COS7 cells transiently transfected with the wild-type protein, as well as purified PP1) confirmed that AKT is a substrate of PP1. Furthermore, endogenous PP1 and AKT associate with each other in SKBR3. However, the phosphatase is phosphorylated and its activity is suppressed (determined by in vitro assay). In contrast, ErbB2 inhibition abrogates PP1 phosphorylation and restores its activity (measured by its ability to dephosphorylate AKT in vitro). Finally, transient overexpression of constitutively active PP1 in SKBR3 cells promotes marked dephosphorylation of endogenous AKT protein. These data indicate that ErbB2 acts to preserve the phosphorylation, and hence to prolong the activation, of AKT kinase by repressing the activity of the phosphatase PP1. ErbB2 thus functions to regulate AKT kinase by simultaneously promoting its activation while inhibiting its inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells.

PURPOSE ZD1839 is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) that has shown clinical activity against EGFR-expressing tumors. Our aim was to explore the effects of ZD1839 in breast cancer cell lines expressing different levels of EGFR and the closely related HER2 receptor. EXPERIMENTAL DESIGN We studied the growth-inhibitory effects of ZD1839 in a series of bre...

متن کامل

Advances in Brief ZD1839, a Specific Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor, Induces the Formation of Inactive EGFR/HER2 and EGFR/HER3 Heterodimers and Prevents Heregulin Signaling in HER2-overexpressing Breast Cancer Cells

Purpose: ZD1839 is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) that has shown clinical activity against EGFR-expressing tumors. Our aim was to explore the effects of ZD1839 in breast cancer cell lines expressing different levels of EGFR and the closely related HER2 receptor. Experimental Design: We studied the growth-inhibitory effects of ZD1839 in a series of bre...

متن کامل

The tyrosine kinase inhibitor ZD1839 ("Iressa") inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells.

The epidermal growth factor receptor (EGFR) is commonly overexpressed in many human tumors and provides a new target for anticancer drug development. ZD1839 ("Iressa"), a quinazoline tyrosine kinase inhibitor selective for the EGFR, has shown good activity in preclinical studies and in the early phase of clinical trials. However, because it remains unclear which tumor types are the best targets...

متن کامل

Hsp90 rescues PTK6 from proteasomal degradation in breast cancer cells.

PTK6 [protein tyrosine kinase 6; also known as Brk (breast tumour kinase)] is a non-receptor tyrosine kinase, closely related to Src, but evolutionarily distinct, that is up-regulated in various cancers, including breast cancer. Hsp90 (heat-shock protein 90) was identified as a PTK6-interacting protein in HEK (human embryonic kidney)-293 cells overexpressing PTK6. Hsp90 interacted with the PTK6...

متن کامل

Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B.

Histone deacetylase inhibitors induce hyperacetylation of the amino-terminal lysine residues of the core nucleosomal histones, which results in chromatin remodeling and altered gene expression. Present studies demonstrate that exposure to a novel hydroxamic acid analogue histone deacetylase inhibitor, LAQ824, induced p21WAF1 and p27KIP1 and caused growth arrest and apoptosis of human breast can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 22  شماره 

صفحات  -

تاریخ انتشار 2003